

2

3

UNIVERSITY OF CAMBRIDGE Department: Veterinary Medicine

Ionising Radiations Regulations 1999, Prior Risk Assessment, and, Environmental Permitting Regulations 2010 (EPR10), 'Best Available Technique' Radioactive Substances – Unsealed Sources

Guidance is available to help you complete this form – please refer to the Safety Office document IR004.

1	Department: Title and assessment reference number	
	Name of Assessor/post and status	
	Location of work/room number	
	Description of the work	

Radionuclide and maximum activity	
used in one procedure	
Time taken for one procedure	
How many procedures carried out	
in one year?	

This section is to demonstrate that **Best Available Technique (BAT)**, is being observed in order to minimise the disposal of radioactive waste to the environment and to minimise radiation exposures of the public. The process must ensure minimisation of activity in any waste generated **and** minimisation of the volume of any waste transferred to other locations.

Can you use a non-radioactive method?	
If no, why not?	
Which Radionuclide will you be using?	
Why have you chosen the above Radionuclide?	
Can you use a less dispersible form of the radionuclide, for example, liquid rather than gaseous?	
Will the number of procedures carried out be minimised in order to prevent unnecessary disposals of radioactive waste? - this of course needs to be consistent with good experimental outcomes	

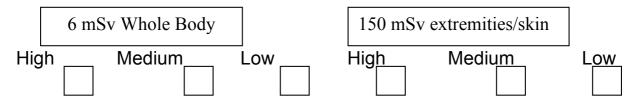
Is this work to be carried out in an	
existing radioactivity work area? If	
not, and a new area is being set	
up, explain why this is necessary.	
How will you minimise any	
contamination of work surfaces?	
What arrangements are there in	
place for specifying (fit for	
purpose), regular monitoring and	
maintenance of use and disposal	
facilities e.g. benches, drains,	
waste stores and fume cupboards	
What have you selected in terms of	
best practice handling methods	
which will jointly reduce doses to	
staff and also minimise the	
likelihood of accidents, and hence	
accidental discharges to the	
environment?	
Has it proved necessary to	
instigate any compromises in the	
procedure in order to keep staff	
doses low (ALARP), but which	
could also result in higher	
discharges to the environment? If	
so, please give details:	
Has the Best Practical	
Environmental Option (BPEO)	
been chosen for waste disposal?	
(consult RPS/Safety Office/RPA for	
<u>advice)</u>	
Waste route 1 – identify chosen	
route:	
Waste per procedure	
Waste total per month	
Waste route 2 – identify chosen	
route:	
Waste per procedure	
Waste total per month	
Waste route 3 – identify chosen	
route:	
Waste per procedure	
Waste total per month	

How is the proportion of waste	
going to the above routes	
calculated or estimated?	
Is there any possibility of unused	
stocks being returned to the	
supplier? (or shared with other	
users?)	
Are radioactive waste disposal	
procedures documented in your	
department? (Quote departmental	
references)	
Do protocols for your work, and	
local rules require a minimisation	
approach?	
If not, arrange for these documents	
to be revised, and confirm action	
here	
Are accurate records of waste	
disposal kept in your lab? – review	
practices if not (set compliance	
date)	
/	
Will decay storage for this waste be	
employed within the department (or	
associated facilities)? If so, where,	
and for how long and how will the	
facilities be monitored and	
maintained?	
Describe the arrangements that	
exist for radioactive waste storage	
and disposal (eg SoPs and Local	
Rules for your Group/Laboratory)	
What departmental training	
arrangements exist for staff	
handling radioactive waste?	
Add further information on how you	
will minimise the environmental and	
public dose effects that may result	
from your work	
· · · · · · · · · · · · · · · · · · ·	
Have you consulted the	
Departmental Senior/Lead RPS on	
this proposal? If not – why not?	

Has the University RPA been consulted on the environmental issues associated with this proposal – if not please explain why this has not occurred – eg if this is a minor change to an existing protocol.	
How will you review the above BAT process for your protocol in order to ensure that best practice continues to be observed by all using the protocol?	

The following sections consider the potential radiation doses to employees and others that may arise from carrying out the work. These sections also enable you to identify the measures that may be needed in order to restrict exposure to ionising radiation. Data for making simple estimates of potential radiation exposure is available on the Safety Office Website (Radiations pages).

4	Who will be involved with this work?		
	Category of Workers	Number of Workers	
	Employees		
	Other (Specify)		
	Female Workers		
	Pregnant Workers		
· · · · ·	Ionising Radiation Hazard	Details	
5	Experimental procedure	Supporting data for these estimates can	
	including drain disposals.	be found on SO's Website (Radiations	
	NO control measures in place	page) or consult the University RPAs	
	A. External hand contact dose –		
	estimated based on the activity	microsieverts	
	used in <i>one procedure</i> enclosed		
	in a plastic syringe	<u>N.B. Hand contact must be avoided!</u>	
	B. External radiation dose from	1. Skin dose (for Betas):	
	activity used in one procedure.	2. Deep tissue (penetrating) dose	
		(for Gammas):	
	Estimate as a point source at 30	(in microsicy orts)	
	cms from person	(in microsieverts)	
	C. Internal radiation (Ingestion).		
	10% ingestion from ONE	microsievert	
	procedure		
	• ·		


D. Internal radiation (<u>Inhalation</u>). Suggest you estimate 10% from <i>one procedure</i> – even if not known to normally be volatile	microseivert
E. Estimate of A <u>nnual</u> 'whole body' Dose = Value of B2, above <u>multiplied by the number of</u> <u>procedures each year</u> , plus C <u>and D values</u> .	microsievert/year
F. Estimate of Annual external skin/extremity dose = B. 1 or the sum of A & B. 1above as applicable (see guidance) <u>multiplied by the number of</u> <u>procedures each year.</u>	microsievert/year
G. Is the substance known to be volatile?	
H. If so – Calculate airborne contamination assuming that 10% of <i>one procedure</i> became volatile in your laboratory	Bq/unit volume
 Absorption through the skin - Likelihood. Y/N and why? 	
J. Working surface contamination from total spill of <i>one procedure</i>	Bq/unit area
K. Surface dose to the skin, resulting from 10% of activity used in the procedure remaining uniformly on the skin for one hour	microsievert

Ionising Radiation Hazard Solid waste disposal operations NO control measures in place	Details Include time spent by 'others' in transferring your waste to the departmental waste store
Time handling waste from one procedure	
A. <u>External radiation dose</u> from activity used in one procedure.	1. Skin dose (Betas):
Estimate as a point source at 30 cms. Use data from 5.B.1/2,	 Deep tissue (penetrating) dose (Gammas):

	corrected for (shorter?) time spent handling waste.	(in	microsievert)
	B. Estimate of annual external skin/extremity dose = 6.A.1. above <u>multiplied by number of</u> <u>procedures each year.</u>		microsievert/year
	C. Ingestion/Inhalation exposure for waste transfers.	Comr	nents:
	This should <u>not</u> normally be a significant issue if appropriate precautions are taken (see control measures for solid waste, Table 9).	Inges	tion : Inhalation:
	However, i <u>f relevant (</u> Consult RPA), use time and frequency corrected data from 5.C and D above, as a possible worst case.	Total	microsievert/procedure:
	D. Estimate of <u>annual</u> 'whole body' dose = Value of 6.A.2 <u>multiplied</u> <u>by the number of procedures</u> <u>each year</u> , plus the value from 6.C. <i>(if relevant).</i>		
7	Possible accident situations		
	What are the most likely accident/incident scenarios? Specify likely doses to anyone if these may be greater than those identified above		
	How will the identified accidents be prevented or effects limited?		
	What would the effect of failure of engineering controls such as fume cupboards – how would this be dealt with and prevented?		
8	Results of previous monitoring for similar work?		Comments
	Whole body (for single procedure or		
	annual)		

9	Control measures for this work, in order to minimise the worst case dose	Comments
	Are adequate Local Rules in place	
	Designation of area proposed for this	
	work: normal, supervised or controlled?	
	Warning Signs	
	Written arrangements (ie System of Work	
	for controlled areas)?	
	Access arrangements for controlled areas	
	Training?	
	Note taken of manufactures and suppliers	
	safety data?	
	Personal Dosimetry?	
	Type of contamination/dose rate monitor	
	to use	
	How will the principles of time and	
	distance be applied to this procedure?	
	Measures to prevent contamination and	
	therefore minimise radiation dose	
	Measures to minimise spread of	
	contamination from the work area	
	Is it likely that contamination could be	
	transferred outside the work area (ie the	
	individual laboratory) that may result in	
	significant radiation exposure? If so how	
	will this contamination be prevented?	
	Provision of radiation shielding	
	Other engineering controls	
	Personal Protective Equipment (PPE) –	
	specify precisely details if needed	
	Additional Precautions for those handling	
	solid waste	
	Has RPS/RPA advice been sought?	
	Other measures	

Estimate the risk to any worker as high, medium or low, as to the likelihood, *when the standard control measures set down in the table above, are employed,* of a worker receiving, in a year, a radiation dose of 6 mSv whole body (sum of external penetrating radiation and internal radiation), and 150 mSv extremity (i.e. skin dose to the hands) – use data from table 5 and 6 above.

10	If the risk has been assessed as LOW, are any potential radiation doses As Low As Reasonably Practicable? If not ALARP, note additional control measures that must be employed:	Additional control measures
	High or medium risks	Additional measures
11	In the unlikely event that the above assessment indicates a medium or high risk, or there is a risk of spread of contamination that could cause significant exposure, you must consult the RPA, and specify additional control measures. For instance:	
	Reduce amount of radionuclide used	
	Revise Local Rules and written arrangements	
	Additional training	
	Change designation of work area (consult RPA)	
	Restrict work to controlled area (consult RPA)	
	Personal protective equipment	
	Others	

If it is not possible to further reduce the risk, then further consultation <u>must</u> take place with the RPA, this will include consideration of classification of workers.

12	Based on the above assessment, are additional control measures needed for female or pregnant workers? If so, detail the measures. Note that risk assessments should <i>always</i> be re- visited in the event of a worker declaring pregnancy	Additional measures:
13	Steps to prevent accidents:	
	Steps to limit consequences of any accident:	
14	Comments from the appointed Radiation Protection Supervisor for the work area in question.	
	Research Supervisor (if appropriat	te): Name:
		,
	Date:	
	Date: Specify a routine revision date for	this assessment:
	Date:	this assessment: Date:
	Date:	Signature: this assessment: Date: that re-assessment will always be in this work for instance, changed
15	Date:	Signature: this assessment: Date: that re-assessment will always be in this work for instance, changed
15	Date: Specify a routine revision date for RPS Name: RPS Signature: Ensure that the assessor is aware required for any significant change activity limits or different category pregnant or "new mothers". Additional comments <u>if</u> this form is seen by the appointed RADIATION	Signature: